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Abstract

We describe an approach for directly embedding polycrystal plasticity models in component scale calculations, with an em-
phasis on computational tractability. Previously, we have employed adaptive sampling to mitigate the computational cost of direct
embedding, achieving two or more orders of magnitude in wall-clock speedup compared to more traditional approaches. However,
in our previous work the crystal orientation distribution function (crystallographic texture) was not allowed to evolve significantly.
Here we discuss an approach that allows for evolving texture by employing discrete harmonics, effectively decoupling considera-
tions related to accuracy of integrals in the homogenization from those related to adequate representation of the evolving texture.
We discuss the basic behaviors and convergence of the new polycrystal plasticity framework. Specific applications focus on the
deformation of titanium, including the effects of twinning. Overall, the discrete harmonic based framework offers an attractive path
forward for computationally efficient multi-scale embedding of polycrystal plasticity.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

There is longstanding interest in models that are able to capture anisotropic plastic flow, for example in simulations
of metal forming [1–3]. Preferred crystallographic orientation in polycrystals is a principal source of anisotropy. This
preferred orientation is sometimes referred to as crystallographic texture, and it is characterized by an orientation dis-
tribution function (ODF) [4]. The ODF is an important touchstone between experiment and simulation as it is easily
measured by diffraction methods, with various methods appropriate to probing different sample volumes [5,6]. Models
parameterized from a fixed crystallographic texture have been used to capture aspects of anisotropic flow, for exam-
ple [2,7]. For scenarios involving tighter coupling with fine-scale state or for which precomputation is unattractive,
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Fig. 1. Diagram outlining the call sequence by which the overall constitutive model obtains fine-scale model response information. Solid arrows
indicate in-process function calls while dashed arrows indicate remote method invocation (RMI) [35]. In the case of the fine-scale (FS) evaluation
itself, the remote method invocation is serviced using MPI-based parallel computing.

direct multi-scale embedding has been employed. However the computational cost of direct embedding of polycrystal
plasticity is prohibitive, especially as one moves from relatively simple assumptions linking the deformation of the
grains in the aggregate to models with higher fidelity and correspondingly higher computational expense [8–13].

To mitigate the cost of direct embedding, researchers have developed multi-scale embedding methodologies that
employ adaptive sampling [14–19]. These techniques have some commonalities with in situ adaptive tabulation and
similar schemes developed for modeling chemical kinetics [20–22]. Previous versions of the embedded polycrystal
plasticity with adaptive sampling did not include texture evolution [17,23]. The primary thrust in the present work
is to allow for texture evolution, including the effects of both crystallographic slip and deformation twinning, in a
tractable multi-scale approach. Evolution of the texture, especially for materials that exhibit mechanical twinning, can
significantly affect the evolution of flow stress at moderate levels of plastic deformation. It is worth noting that models
to directly capture twin domain formation typically require fine computational grids and significant computational
expense [24]. While there is utility in studies focused on details of twin formation, the focus here is on capturing the
gross effects of texture evolution and twin formation on flow stress evolution.

The complexities of modeling texture evolution are well known [5]. For example, both spectral methods [25–29]
and finite element based methods [30–32] have been employed to evolve the ODF. In spectral methods, the ODF is
typically expressed in a Fourier series using symmetrized generalized spherical harmonics. Finite element schemes
are often used over the Rodrigues parameter space. When accounting for mechanical twinning, the partial differential
equation for ODF evolution becomes non-local, and such effects have been treated previously [8,33].

Here we use discrete harmonics based on a finite element discretization of Rodrigues space. This allows for inde-
pendent control of the accuracy of ODF evolution and the accuracy of integrals over the orientation space. And, as
shown below, we can capture salient features of texture evolution with many fewer parameters than are needed to track
the orientations in a discrete aggregate based representation of a polycrystal. Nevertheless, the dimensionality of the
polycrystal (fine-scale) response space remains relatively large—roughly 60 for the embedding in finite element cal-
culations shown below. The input space includes the current state of the material and driving conditions such as stress
state and temperature. The fine-scale model provides plastic deformation response and updated material state under
these conditions. While the input dimension of the response space may be large, the portion of the response space
probed in a given calculation tends to fall on a low-dimensional manifold [21,23]. The points on this manifold are not
known ahead of time, motivating the use of an in situ adaptive sampling method that computes responses as needed.

Software modularity and multiple-program multiple-data (MPMD) parallelism are facilitated by the babel and co-
op tools [34,35]. See [36,37] for a general discussion of advantages of MPMD parallelism for load balancing. Fig. 1
contains a diagram of the call sequence by which the overall constitutive model obtains fine-scale model response
information. After development of the use of discrete harmonics in Section 2, we describe the constitutive model in
Section 3. The fine-scale evaluations referenced in Fig. 1 amount to an evaluation or approximation of Eq. (24) as
described below. In Section 4 we touch again on the decomposition of the workload onto computational resources,
but we refer the interested reader to [23] for more details related to the use of computational resources. As described
below, most of the calls to the adaptive sampling module result in an approximation of the fine-scale response based
on previous evaluation data and do not require a new fine-scale model evaluation.

To demonstrate the convergence and efficacy of the discrete harmonic based approach, we show applications to
the deformation of hexagonal α titanium, including mechanical twinning. This application is motivated by previously
published work on this material [38]. Both Taylor (upper bound) and the more sophisticated but computationally
intensive viscoplastic self-consistent (VPSC) type linking assumptions are used in the example calculations.
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2. The use of discrete harmonics for texture evolution

Aspects of the application of discrete harmonics to texture evolution are provided here, with further details available
in a companion paper [39]. The companion paper focuses on the mathematical and computational basis for the
approach, while here we focus on the implementation and applications. These applications include the use of multiple
linking assumptions for the polycrystal plasticity model, and include results for a material that undergoes deformation
twinning. Some of the methodology related to discrete harmonics is discussed here for completeness.

Significant effort has gone into development of methods for evolving the probability density function for lattice
orientation using partial differential equations over the appropriate space [8,25,31–33,40–43]. As described in various
other works (for example [30–32,44]) the use of finite elements over Rodrigues space has several attractive properties
for working with ODFs. Treatment of crystal symmetries is straightforward, resulting in planar boundaries to the
fundamental region. Symmetrically equivalent values on opposite faces can be handled by condensation of redundant
nodal degrees of freedom. Here we combine attractive features of the finite element approach with attractive features of
harmonic expansions. The finite element machinery is convenient for evaluating integrals and operators. The harmonic
expansion can provide a compact representation of the texture and its evolution. By bringing the two together we are
able to independently control the accuracy of the numerical integration and the representation of the texture.

The ODF, A, satisfies a conservation equation

∂ A

∂t
+ div(Av) = Θ (1)

in which v is the reorientation velocity field over the space. The use of such conservation equations for the ODF
has been developed in previous work, for example [30–33,45]. At each point in the orientation space, this velocity
field is directly related to the spin of the crystal lattice orientation. For example, in Rodrigues parameter space the
reorientation velocity field takes the form [46]

v =
1
2

(ω + (ω · r)r + ω × r) (2)

with r being the Rodrigues vector encoding the lattice orientation [47,48] and ω being the axial vector of the spin of
the crystal lattice. That is, ω comes directly from the usual kinematic expressions arising in crystal plasticity. At each
point in the orientation space the ω depends in general on the current stress condition; the local orientation; and the
overall state of the material including the ODF, grain shapes, hardness state variables, and any other state quantities
factoring into the polycrystal linking assumption. This dependence is described more fully in Section 3.3.

On the right-hand side of Eq. (1), Θ is zero for plastic deformation purely by crystallographic restricted slip without
twinning. Deformation twinning abruptly reorients a portion of the crystal lattice and therefore transfers ODF density
across the orientation space in a non-local manner [8,33]. With twinning, the form of the right-hand side of Eq. (1) is
(see Equation 30 of [33]):

Θ(r) =

nt
i=1

A(rt
i)wi(rt

i) −

nt
i=1

A(r)wi(r) (3)

where wi(r) is the volume fraction rate of twinning for twin mode i at lattice orientation r and rt
i is the orientation

that contributes to r through activity of twin mode i . The first sum contains the source terms for orientations being
produced by twinning and the second term contains the corresponding sink terms for orientations being depleted by
twinning.

The finite element scheme follows from the weak form. Using weighting function φ and noting that the orientation
space does not have a boundary

Ωfr


φ

∂ A

∂t
+ φdiv(Av)


dΩ =


Ωfr


φ

∂ A

∂t
− Av · ∇φ


dΩ ∀ φ (4)

with Ωfr denoting the fundamental region of the orientation space. For the special case of Θ = 0 discretization
produces the matrix equation

A+
= A−

+ L−1G(A−v−)∆t (5)
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Table 1
Degree and dimension of the harmonics for hexagonal symmetry
out to dpf = 9 (the maximum employed here). Note that dd is
the dimension of the subspace for the degree in question only, not
including the dimensions of the subspace for lower degree harmon-
ics.

PF degree (dpf) 0 2 4 6 7 8 9
quaternion degree (dq) 0 4 8 12 14 16 18
dimension (dd) 1 5 9 26 15 34 19

for the updated ODF nodal values A+. In this equation L is the L2 inner product matrix and G integrates a shape
function gradient against a vector field over the mesh. In Eq. (5) we have also discretized in time according to a
forward-Euler scheme, replacing ∂ A

∂t with (A+
− A−)/∆t . Given a reorientation velocity field, Eq. (5) may be used

directly to evolve the nodal values of the ODF [30,39]. Throughout this paper, sans-serif fonts (as in Eq. (5)) indicate
quantities that are discretized using finite elements over Rodrigues parameter space.

Discrete harmonics form an attractive basis for representing and evolving the ODF. These are the discrete
approximations to the spherical harmonics, which are themselves eigenfunctions of the negative Laplacian on the
n-sphere. As discussed in [39], the discrete harmonics hi are the eigenvectors of the generalized eigenvalue problem

Hu = λLu (6)

in which H is the H1 semi-inner product matrix. The hi are orthonormal with respect to L and satisfy
Ωfr

hjhkdΩ = hj · L(hk) = δ jk (7)

with the lowest harmonic h0 being uniform in value over Ωfr.
All demonstration results shown here are for α titanium with hexagonal crystal symmetry. Table 1 shows the pole

figure degree (dpf), quaternion degree (dq), and the dimension of the subspace (dd) out to dpf = 9 [39]. Pole figure
degree dpf refers to the degree of the spherical harmonics on the usual sphere, and the quaternion degree is simply
dq = 2dpf. The dimension of the subspace dd is the number of independent harmonics on the orientation space
for a given degree — dd is not associated with the dimension of the Rodrigues space. For the true harmonics, all
eigenvalues are the same for a given degree. Fig. 2 shows the eigenvalues of Eq. (6) for a finite element mesh with
3080 independent nodal degrees of freedom over the hexagonal fundamental region. This is the finite element mesh
that is used for all of the results shown below. Fig. 2 also has lines that indicate the eigenvalues for the true harmonics
of the given degree. The clustering of the eigenvalues within a degree gives an indication of how well the finite element
mesh is able to approximate the true harmonics of that degree. Harmonics of higher degree have more fluctuations
and are harder to capture.

Using the discrete harmonics we write

A =

nh
i=0

cihi. (8)

While the fidelity of the approximation of the true harmonics depends on the mesh being used, the discrete harmonics
are always orthonormal so that ci =


Ωfr

AhidΩ . The uniform 0th harmonic is the only one that integrates to a non-zero
value and

Ωfr

hjdΩ = 0 ∀ j ≠ 0 (9)

1
c0

=


Ωfr

h0dΩ (10)

so that the condition

Ωfr

AdΩ = 1 is satisfied by construction given the fixed value of c0. Thus the degrees of freedom
for evolving the ODF are the discrete harmonic coefficients up to the desired degree excluding c0. Alternatively, one
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Fig. 2. Eigenvalues for the discrete harmonics up to dpf = 9 for the mesh used for all results in this paper. The dpf (pole figure degree) values are
given across the top of the plot. Across the bottom, the figure also contains plots of some of the harmonic modes of various degree to illustrate the
nature of the modes. These plots are over the hexagonal fundamental region of Rodrigues space.

could pick a general non-uniform function A that integrates to unity as the reference ODF, but then there could be
variations that would not evolve because they are orthogonal to the basis being used.

The harmonic coefficients may be evolved directly. Given that the hi are constant in time, the coefficients evolve
according to:

dci

dt
=


Ωfr

∂ A

∂t
hidΩ

=


Ωfr

(Θ − div(Av))hidΩ

=


Ωfr

Av · ∇hidΩ +


Ωfr

ΘhidΩ . (11)

As in Eq. (4), the application of integration by parts is for the special case of a space with no boundary. In the discrete
form, the sum involving rt

i (Eq. (3)) entails the computation of operators Lt
i such that

Ωfr

f (r)g(rt
i)dΩ = f · (Lt

i g). (12)

Note that the Lt
i depend on the finite element mesh employed and on the geometry of the twinning modes, but they do

not depend on the degree of the discrete harmonic expansion. The discrete form of Eq. (11), with forward-Euler time
discretization and including the effects of twinning, is then

ci
+

= ci
−

+ hi ·


G(A−v−) +


nt

j=1

Lt
j (A

−wj
−) −

nt
j=1

L(A−wj
−)


∆t. (13)

Eq. (13) has clear similarities to Eq. (5) for the evolution over the nodal degrees of freedom in the finite element space.
The terms involving wj are simply the discrete form of Eq. (3). The G(A−v−) term that is common to Eqs. (5) and
(13) is the discrete form that arises from the divergence term in Eq. (1). The different evolution forms then involve
different projections of this reorientation velocity field term. Like v, the fields of twin volume fraction rates wj depend
on the applied stress state and, in general, the current ODF and other state descriptors.
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Fig. 3. Results for evolved harmonic coefficients using direct updating (Eq. (11)) versus projection from evolution of a set of discrete orientations.
Both cases are based on a Taylor approach.

As a confirmation of the basic workings of the discrete harmonic based method, we compare results to a classical
discrete aggregate type approach in Fig. 3. The reorientation velocity field over the hexagonal fundamental region
is evaluated using a Taylor (upper bound) linking assumption [5]. Given the nature of the Taylor assumption, the
velocity field for a given deformation mode is constant in time, which simplifies basic validation. To further simplify
the validation, deformation is by restricted slip alone—twinning is not allowed. The specifics of the material model are
largely irrelevant for this demonstration, as the Taylor linking assumption is used simply to generate a reorientation
velocity field.

In the two simulations, the polycrystals begin with uniform ODFs and are strained in uniaxial tension to a true strain
of 0.25. For the discrete aggregate calculation, an ODF is formed by centering Gaussian distributions around each of
the discrete orientations and then projecting the result onto the harmonic coefficients. Given the smearing associated
with the Gaussians and the differing approximations in the two methods, we do not expect to get precise agreement.
The comparison in Fig. 3 and other such comparisons nevertheless serve to successfully validate the implementation.
It is worth observing that only a small subset of the harmonic coefficients evolve to be non-zero. This is due to the
high degree of symmetry in the both the deformation mode and the initial texture. One could reduce the size of the
space for the texture by specializing the selection of harmonics to specific loading conditions, in rough analogy to a
previously proposed approach [49]. But that is not done here as we seek a method that is applicable to more general
loading scenarios in which the loading path is not known in detail ahead of time.

Texture evolution using the foregoing discrete harmonic based approach, especially under the rapid evolution driven
by twinning, can drive the ODF negative over portions of the orientation space. We use finite elements with linear
shape functions so that the extreme values of the ODF always occur at the nodes. Thus positivity can be checked by
checking the nodal values of A. Positivity can then be enforced by truncating negative nodes to zero and rescaling the
resulting A so that it once again integrates to unity. The truncated and rescaled ODF is used in the evolution equations
and in the calculation of the weighting values for the integrals discussed below in Section 3.4. This straightforward
procedure allows one to enforce positivity even for sharp initial textures or under strongly driven texture evolution. It
is Eq. (13), with A appropriately truncated and rescaled as necessary, that we use for evolving the degrees of freedom
in the applications shown in Section 4.

As a final note, from Eq. (13) we see that while the hi are orthonormal the evolution of the ci depends on the current
ODF, reorientation velocity field, and twin fraction rates. Thus the ci are coupled in their evolution and the evolved val-
ues of lower degree harmonics can change if the expansion is extended to include discrete harmonics of higher degree.

3. Constitutive model

The framework of the elasto-viscoplastic constitutive model is similar to that in [17] with extensions to allow
for texture evolution and the use of more general theories for the fine-scale polycrystal plasticity model. Overall, the
model shares many features with constitutive modeling frameworks described elsewhere [50–52]. The macroscale and
thermo-elasticity aspects of the model are independent of the choice of Taylor [5] or VPSC [53] fine-scale models,
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facilitated by a modular software implementation employing the babel [34] tool. Some salient features of the Taylor
and VPSC linking assumptions are mentioned below in Section 3.4.

3.1. Kinematics

The kinematics for the constitutive model follow a standard multiplicative decomposition of the deformation
gradient

F = V · R · Fp, (14)

in which V accounts for thermo-elastic stretch, R accounts for rotation of the material frame associated with the
fine-scale material state, and Fp accounts for plastic deformation. The velocity gradient L = Ḟ · F−1

= D + W is then

L = V̇ · V−1
+ V · L̂ · V−1 (15)

L̂ = Ṙ · RT
+ R · L̄ · RT. (16)

The fine-scale polycrystal model provides the plastic response in the form of the velocity gradient contribution
L̄ = Ḟp

· (Fp)−1. For the plasticity models employed here, plasticity does not change the volume of the material
so that tr(L̄) = 0. The rest of the material model is handled at the coarse-scale. In the fine-scale model, plasticity is
assumed to occur either by mechanical twinning or by restricted slip mechanisms on known crystallographic planes
within the grains of the polycrystal.

As shown in [17], considerable simplification of the kinematics is possible based on assumptions about V. Writing
V ≈ a(I + ϵ∗) where J = det(V) and a = J 1/3 we assume that ϵ∗ is deviatoric and small. This results in:

RT
· D′

· R =
1
a

˙̄V′
+ D̄′ (17)

dJ

dt
= J tr(D) (18)

RT
· W · R = RT

· WR
· R + W̄ +

1
a


V̄′

·


D̄′

+
1

2a
˙̄V′


−


D̄′

+
1

2a
˙̄V′


· V̄′


(19)

where V̄ = RT
· V · R, and WR

= Ṙ · RT. The kinematics retain desirable properties for large volume changes
and for large rotations [17,52]. The appearance of the 1

a factor in Eq. (17) is directly related to the approximation

V−1
≈

1
a (I − ϵ∗) which is based on small ϵ∗. As detailed in [17], the time derivative of ˙̄V′ occurs before the bar

operation so that extra time derivatives involving R do not appear.
We employ a logarithmic strain measure with a volumetric part that is exactly tr(Ē) = ln(J ). Consistent with

the assumptions built into the kinematic approximations used in obtaining Eqs. (17) and (19), it is convenient to
approximate the deviatoric part of the strain measure as Ē′

≈
1
a V̄′. As with V̄, the bar in Ē indicates rotation with R,

and use of the rotating frame simplifies the treatment of anisotropic elasticity.
The solution for Eq. (18) is, for constant D over a time step ∆t ,

J+
= exp(tr(D)∆t)J−. (20)

And with WR from Eq. (19) approximated as being constant over the time step we have

R+
= exp(WR∆t)R−. (21)

The evolution of R tracks the rotation of the frame associated with fine-scale material state, and thus captures rigid
rotation of the texture.

With the decoupling of volumetric deformation into Eq. (20) and a forward-Euler approach to Eq. (21), we are left
with the five dimensional non-linear system of equations in Eq. (17) to solve to complete the constitutive model update.
Determining the partitioning of the deformation rate into rate of thermo-elastic stretch ˙̄V′ and plastic deformation rate
D̄ requires information about the constitutive response of the material. As shown in Fig. 1 and discussed in Section 3.3,
the fine-scale polycrystal plasticity model provides (by way of the adaptive sampling based interpolation) the values
of D̄ and W̄ to help complete the constitutive description.
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Due to the stiffness of the differential equation, we use a solution scheme that is fully implicit (backward-Euler) in
V̄. A robust trust region subproblem based scheme [54] is used to solve the system of equations. With the exception
of the derivatives of the response of the VPSC algorithm, all of the derivatives needed for the solution scheme are
computed analytically. As in [17], full analytic derivatives are used throughout when employing a Taylor linking
assumption.

3.2. Thermo-elasticity model

Thermo-elastic aspects of the model are not the emphasis here. It is worth noting that the anisotropic elastic moduli
are evaluated from the initial ODF using an upper bound approximation. A straightforward modification of the scheme
would allow for the elastic anisotropy to evolve as the texture evolves, but such effects are not the emphasis in Section 4
and for now we avoid the additional complexity.

With the Kirchhoff stress τ̄ = J σ̄ being work conjugate to the logarithmic strain to good approximation for small
deviatoric strains [55,56] the elasticity model is phrased as

τ̄ = fK̄(Ē, θ, e) (22)

with θ and e being the temperature and specific internal energy respectively. For applications in Section 4 temperature
changes are small and temperature dependence of the elastic moduli may be neglected. The internal energy contributes
to the stress through a Grüneisen parameter in the same way as discussed in [57]. This naturally gives rise to thermal
expansion, and it is for this reason that we call V the thermo-elastic stretch.

3.3. Plasticity model, multi-scale embedding, and adaptive sampling

We now delve further into the details of the fine-scale response, how the response is computed, and how the
response is manipulated through the call sequence outlined in Fig. 1. To complete the overall constitutive response,
the fine-scale model provides information for L̄ = D̄ + W̄ and the evolution of the fine-scale state descriptors H.
Instead of providing L̄ directly, the fine-scale model provides parameters that can be used to compute L̄ through a
non-linear function:

L̄ = L̄◦


τ̄ ′


g


1/m

(23)

with the set of fine-scale response parameters determined from

{L̄◦, g, m, H+
} = fY (τ̄ ′, H, p, θ,∆t). (24)

That is, the fine-scale model provides evaluations of fY . The adaptive sampling method provides approximations of
fY using interpolation schemes. In this functional form, L̄◦ provides directionality of L̄, g scales the material strength,
and m approximates the material rate sensitivity. The behavior of these parameters is more amenable to interpolation
by adaptive sampling than the highly non-linear behavior of L̄ itself. In contrast with the approach in [17], fY also
provides the updated fine-scale state descriptors H+ over a time increment ∆t for the given driving conditions. This
choice is primarily motivated by a desire to isolate complexities in the update of H to the fine-scale model. However,
like L̄, parts of H depend in a strongly non-linear manner on the inputs, especially τ̄ ′. To improve performance of
the sampling it may ultimately be desirable to update H using parameters from fY in nonlinear functions. It is not
however clear that such an approach is tractable for general fine-scale models. For now we employ Eqs. (23) and (24)
to demonstrate the approach with a comparatively simple formulation.

While the implicit solve of Eq. (17) requires only ∂ fY
∂ τ̄ ′ , the adaptive sampling modules require the derivatives

of the full input–output relationship of fY in order to construct their interpolation functions [15,16]. As mentioned
above, the derivatives in the Taylor case are done analytically, significantly mitigating the computational cost. But for
VPSC finite differencing is used to perform parts of the derivative calculation for which analytic derivatives are not
yet available. The wall-clock time for the finite-differencing is reduced using multiple-program multi-data (MPMD)
parallelism to perform the finite differencing on remote processors in parallel (Fig. 1). For the results in Section 4
computing resources are used to reduce the wall-clock time of the fine-scale evaluation with derivative information to
the equivalent of a single fine-scale evaluation.
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Fig. 4. Results for evolved harmonic coefficients using full fine-scale evaluations versus kriging based adaptive sampling. Both cases are based on
a Taylor approach.

The modular implementation of the software facilitates switching among full fine-scale evaluations (no sampling),
kriging based adaptive sampling [16], and an ellipsoid-of-accuracy based approach [15,21] that employs the same
metric-tree database as in [16]. Fig. 4 compares the results of harmonic coefficients ci evolved with a Taylor fine-scale
model with either full evaluations or kriging based sampling. These types of comparisons between full evaluations
and sampling were performed to verify accuracy of the sampling for a given set of numerical parameters in the
sampling scheme. The sampling is generally found to control errors reliably in the approximation of fY and to produce
acceptable wall-clock speedup in the calculations by virtue of the reduction in the number of fine-scale evaluations.

3.4. Fine-scale model

The queries to the fine-scale model are formulated completely from the arguments to fY in Eq. (24). The fine-
scale servers depicted in Fig. 1 are launched and initialized with fixed data structures such as the G and the hi at the
beginning of the overall simulation, but the servers need not store any evolving fine-scale state information. Indeed, as
the state is often updated by the adaptive sampling module without a call to a fine-scale server, and quadrature points
at the coarse-scale are not associated with any particular fine-scale server, it does not make sense for the fine-scale
servers to store evolving state information.

The modeling framework is exercised with both Taylor [5] and VPSC [53] style fine-scale polycrystal visco-
plasticity formulations. In both cases, the formulations are simplified to have a single set of uniform hardness
parameters for the entire polycrystal. As has been noted elsewhere[25,58,59], this type of approximation is sufficient
to capture overall hardening effects especially in the absence of abrupt load path changes.

In the applications to titanium in Section 4 that make use of a VPSC linking assumption, there is a single scalar
hardening parameter for each of the three deformation modes that are considered: prismatic slip {101̄0}⟨1̄21̄0⟩,
pyramidal ⟨c + a⟩ slip {101̄1}⟨1̄1̄23⟩, and tensile twinning {101̄2}⟨1̄011⟩. The H for the VPSC case is then composed
of three hardnesses, a scalar accumulated shear value, six parameters that encode average grain shape, an accumulated
twin fraction (for output purposes only), and the chosen number of discrete harmonic coefficients nh. The framework
could be extended to allow for distributions of the hardnesses over orientation space and each hardening parameter
could then be represented by nh additional coefficients. But for simplicity and to reduce the dimensionality of H such
extensions are left for future work.

Given that each grain may deform differently under a VPSC scheme, VPSC models can be formulated to track
distinct grain shape for each grain in a discrete aggregate. As part of the VPSC linking assumption, these grain shapes
modulate the interactions of each grain with the rest of the polycrystal. Generally speaking, VPSC formulations can en-
tail the tracking of significantly more history variables than a Taylor formulation. But here we focus on keeping the rep-
resentation of the state compact, using for example an average grain shape instead of distinct shapes for various grains.

Under the VPSC scheme, the hardness state variables, grain shape, and ODF representation entering into H in
Eq. (24) all influence the reorientation velocity field and the twin volume fraction rate fields. Through Eq. (13), these
fields then determine the updated harmonic coefficients appearing as part of H+ in the output of Eq. (24). Thus for
VPSC there is a fairly complete and complex coupling between the inputs and outputs to Eq. (24).
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When using the Taylor linking assumption in Section 4 (and above in Section 2), we employ three types of slip sys-
tems: basal {0001}⟨1̄21̄0⟩, prismatic {101̄0}⟨1̄21̄0⟩, and pyramidal ⟨c+a⟩ slip {101̄1}⟨1̄1̄23⟩. As indicated in Section 2,
Taylor simulations are convenient for testing basic behaviors of the method, and they are conducted without twinning.
As a further simplification in the Taylor case, a single scalar hardness parameter is tracked for the entire polycrystal,
with fixed ratios of strengths among the slip system types. Also, the Taylor model is insensitive to grain shape.

Updates of the discrete harmonics in H+ are outlined in Section 2 and the update of the other entries in H
follows standard formulations [5,53]. The computation of other quantities used in evaluating fY amounts to evaluating
integrals of the form

f̂ =


Ωfr

f (r; τ̄ ′, H, p, θ)A(r)dΩ (25)

for some general function f over the orientation space. Like the integrals in Section 2, these integrals are performed
using the finite element discretization of the fundamental region of Rodrigues space. The function f is computed at
the symmetry-reduced nodal points on the mesh. The integral is then evaluated by a vector inner product involving the
ODF values and weights that account for the mesh geometry and for the metric of the space. The weighting values are
computed once and stored as they are fixed for a given mesh. Due to the coupling among crystal orientations in the
response computed by VPSC, the f at each r depends on the full distribution of the current ODF which is provided
to VPSC through the weighted ODF values at the nodal points (fixed orientations) over the mesh.

Results in Section 4 are generated using a finite element mesh with 3080 symmetry-reduced nodes, so that the
fine-scale evaluations effectively make use of 3080 weighted discrete orientations. Alternatively, integrals could be
computed by evaluating functions at the quadrature points. However with 18 432 elements in the mesh and 15 quadra-
ture points in each element, that approach would result in significantly more computational work without a significant
benefit in accuracy.

In Section 4 we see that one needs perhaps nh = 40 to begin to capture reasonable texture evolution in hexagonal
materials. While precomputation may be tractable for methods that do not evolve texture and are restricted to small-
dimensional input spaces [7] or for Taylor type assumptions in which the response at each r decouples from the
overall ODF [29], precomputation seems intractable in more general settings. For the case of VPSC, each evaluation
requires roughly one processor-second. To cover a space with 60 input dimensions (for harmonics as well as τ̄ ′, p,
θ , and other H entries such as hardness variables) with eight points across each dimension one would require 1046

processor-years. Storage of the results spanning the full response space would also pose serious challenges. As stated
in the introductory comments, such considerations drive the choice to employ adaptive sampling methodologies for
concurrent multi-scale embedding.

Note that these comments about the motivation for adaptive sampling are made in the context of precomputation to
span the full fine-scale response space. In contrast, VPSC type models are routinely used without adaptive sampling in
simulations of the homogeneous deformation of a body, such as in idealizations of uniaxial tension and compression
tests. For these types of calculations only a small number of VPSC evaluations is needed for each time step and the sim-
plicity of direct embedding with full evaluations makes that approach attractive. Consideration of adaptive sampling is
more relevant for macroscale calculations that probe a much wider portion of the fine-scale response space and require
many fine-scale response evaluations each time step, such as in finite element simulations of forming operations [17].

As a final note about coupling to fine-scale models we recall from Section 2 that positivity of the ODF is enforced by
truncating negative nodal values to zero and then rescaling. This procedure is performed before generating the weight-
ing values at discrete orientations. As the weight values then depend on the rescaling factor, there are additional terms
that appear in the chain rule expression for the derivatives of fY with respect to the harmonic coefficient entries in H.

4. Results from application to titanium

To demonstrate the efficacy of the method, we apply it to deformation and texture evolution of hexagonal α tita-
nium. The specific example calculations are motivated in part by the work described in [60,38], in which the starting
material has been rolled and possesses a non-uniform initial ODF. As noted above, all ODF calculations make use of
a finite element mesh with 3080 independent nodal degrees of freedom (3897 nodes total including redundant bound-
ary nodes). Fig. 5 provides an example of the twinning inner product matrices Lt

j corresponding to the six distinct

{101̄2}⟨1̄011⟩ tensile twin modes.
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Fig. 5. Example of the action of the twinning operators for {101̄2}⟨1̄011⟩ tensile twinning in titanium. For a broad Gaussian distribution centered at
the origin of the orientation space, the plots show the image of the Gaussian under operation of the six twinning modes. These results are depicted
on slices through the hexagonal fundamental region of Rodrigues space.

Table 2
Convergence of evolved ODF versus de-
gree dpf for hexagonal symmetry using
a Taylor linking assumption to effective
plastic strain of 0.25 in uniaxial tension.
See also Fig. 7.

PF degree g error ODF error

2 0.0110 0.468
4 0.00599 0.467
6 0.0125 0.234
7 0.0127 0.233
8 0.00237 0.160
9 0.000839 0.149

4.1. Convergence

Section 2 contains results for validating the discrete harmonic approach against results from a discrete aggregate
based approach for a Taylor type linking assumption. Here we use a Taylor model to further explore convergence of
results versus degree of the discrete harmonic expansion. And we also explore convergence for a VPSC type linking
assumption in terms of predicted stress–strain results and pole figures. Given the focus in this section on convergence
versus degree of the discrete harmonic expansion, simulations are conducted without adaptive sampling. That is,
fine-scale calculations are done for every query of Eq. (24). Thus we avoid conflating accuracy concerns from the
harmonic expansion versus the adaptive sampling. In this case without adaptive sampling, finite differencing of the
VPSC fine-scale model evaluations is needed only to obtain the derivatives of the plastic deformation rate with respect
to the deviatoric stress.

Basic convergence properties are first explored with a Taylor linking assumption without twinning. Results out to
dpf = 9 are shown in Table 2 and Fig. 7. These results are for a strain of 0.25 in uniaxial tension starting from a uniform
ODF — for the same deformation condition as shown in Fig. 3. Results to a strain of 0.5 are similar in character but
with more texture evolution so that one requires a higher degree in the expansion for the same level of accuracy in
the flow stress response. Convergence is measured relative to evolution of the ODF using the full nodal degrees of
freedom (Eq. (5)). Flow stress errors in Table 2 are normalized by the flow stress from the full nodal degree of freedom
case, and ODF errors are computed using the L2 inner product matrix. For comparison Fig. 7 shows the ODF evolved
using the full nodal degrees of freedom, and the data for the full nodal evolution case are the same as in Fig. 3.

Over this range of the discrete harmonic expansion, flow stress response converges more quickly than sharp features
of the evolved ODF. It is known that evolution of the ODF using a Taylor linking assumption rapidly produces sharp
features in the texture [30], and it is expected that one requires expansion to a high degree to capture sharp features. It
does however appear that flow stress behavior may be captured well without resolution of the sharpest features of the
ODF. As noted in Section 2, expanding the basis to higher degree results in modifications to the lower degree discrete
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Fig. 6. Pole figures for the initial texture in the titanium as represented using harmonics to degree dpf = 6 and dpf = 9. Color scales are distinct
for the (0001) and {101̄0} pole figures.

harmonic coefficients — while the basis itself is orthonormal the evolution of the coefficients couples through the
appearance of the current ODF in the evolution equations. This effect is seen in the convergence of the lower degree
coefficients in Fig. 7.

Next, we explore convergence using a VPSC model for textured titanium with twinning. The parameters for the
VPSC model are the same as those in [38]. The initial ODF is determined from pole figure values [38] and the ODF
is projected onto the discrete harmonic modes to produce the initial ci values for the fine-scale material state. Fig. 6
shows the reconstructed pole figures from ODFs with discrete harmonic expansions to degree dpf = 6 and dpf = 9.
The pole figures are constructed using operators based on path integrals through the finite element discretization of
Rodrigues space [44,43,61]. As seen in Fig. 6, expansion to degree dpf = 6 allows one to capture the major features
of the ODF and the corresponding features in the pole figures.

Convergence behavior is examined in both tension and compression along the prior rolling direction (RD) in the
material. Due to the starting texture of the material, tension versus compression along RD offers a strong contrast
in the amount of twinning that is activated. Fig. 8 shows the stress–strain results and evolution of the twin volume
fraction for the dpf = 6 case. For model validation, results are compared to predictions from a predominant twin
reorientation (PTR) type of model that uses distinct hardness variables at each discrete crystal orientation. PTR is one
of the twinning reorientation schemes proposed in [62] and consists in reorienting entire grains with high twinning
activity into the orientation of their most active twin system, under the constraint that the total volume fraction of
reoriented grains has to coincide with the actual twinned volume fraction calculated throughout the aggregate. In this
way, the overall twinned volume fraction is accounted for, while the number of orientations remains constant. The PTR
calculations also make use of a viscoplastic self-consistent linking assumption, but based on a discrete representation
of the aggregate state and evolution. That is, based on a collection of grains with associated fixed volume fractions
and evolving orientations.

The same model parameters are used in both the PTR simulations and the discrete harmonic VPSC based simula-
tions. It would be possible to bring the models into closer agreement by adjusting parameters, but the comparison here
highlights the mild differences due to differing treatments of the mechanics of twinning and hardening. The twinning
mechanics in the discrete harmonic based scheme are more akin to a volume fraction transfer type scheme [8,33,62].
Comparison to the PTR scheme indicates that we capture the general features of deformation twinning while retaining
attractive features for multi-scale embedding.

Figs. 9 and 10 show convergence of the stress–strain response and texture evolution with increasing degree of the
discrete harmonics. In Fig. 9, the lower degree expansions are compared to the result for dpf = 9. Relative stress
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Fig. 7. Convergence of the evolved ODF versus degree dpf for hexagonal symmetry using a Taylor linking assumption to effective plastic strain of
0.25 in uniaxial tension. See also Table 2. The ODF evolved with full nodal degrees of freedom is shown in (a) for comparison. In (b), the size of
the + glyph for the harmonic coefficient is decreased as the degree of the discrete expansion is increased, and the coefficients projected from the
full nodal evolution case are shown with open circles.

differences in Fig. 9 are normalized by the average flow stress in the dpf = 9 simulation. In tension there is less
twinning and the flow stress is well converged by dpf = 6 out to a strain of 0.4. In compression the twinning drives
more significant texture evolution. While dpf = 6 appears to be sufficient out to strains of 0.2, higher degree may be
required at larger strains depending on the desired level of convergence.

ODF convergence is assessed in Fig. 10 in terms of (0001) pole figures after strains of 0.2 and 0.4 in both tension
and compression. Results are consistent with previous observations that flow stress response appears to converge more
quickly than sharp features of the ODF. The differing amounts of twinning in tension versus compression clearly
produce different textures as shown in the pole figures. The appearance of pole density near the prior RD direction
under compression is directly related to the reorientation of the c axes of the crystals under deformation twinning.

4.2. Four point bend

To demonstrate the use of the discrete harmonic based approach in macroscale simulations, we conduct finite
element simulations of four-point bend experiments discussed in [38,60]. Finite element simulations make use of the
ALE3D code [63]. Note that the discretization of the physical space employs standard finite element machinery and we
do not introduce any of the specifics here. The discretization discussed in the foregoing sections is strictly associated
with the use of finite elements over Rodrigues space for the lattice orientations.
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Fig. 8. Stress–strain results and evolution of the twin volume fraction for the dpf = 6 case (lines) for tension and compression along the prior
rolling direction (RD), calculated with the VPSC approach. Results from the PTR scheme are shown (as points) for comparison.

Based on the results in Section 4.1 and the modest strains achieved in the bend simulations (less than 0.1), we use
discrete harmonics up through dpf = 6 for which nh = 5 + 9 + 26 = 40 (see Table 1). Recall from Section 2 that the
single harmonic coefficient h0 for dpf = 0 is constant and does not contribute to nh. These simulations are conducted
using MPMD parallelism to decompose the workload, as in [18,23]. As noted in Section 3.3, this enables more
rapid evaluation of fY (Eq. (24)) by finite differencing of the derivatives of the VPSC outputs that are not available
analytically. Table 3 shows the allocation of computational resources among the executables, and the designations
for the executables correspond to the components shown in Fig. 1. Note that the coarse-scale (CS) processes are 4×

overloaded onto the compute cores. This is done to increase the number of concurrent fine-scale evaluation requests
that can be generated and thus the overall throughput.

These calculations make use of the ellipsoid-of-accuracy based adaptive sampling approach [15]. We choose this
method instead of the kriging based approach [16] because it is more conservative in its control of the interpolation
error so that we can avoid numerical experiments to verify control of accuracy. The quasi-static four-point bend
simulations involve the iterative solution of a non-linear global system of equations for the displacement field at each
time step. The material stiffness matrix is algorithmically consistent, enabling quadratic convergence of the global
system. As mentioned in [17], the sampling modules provide the necessary derivatives of the fine-scale response. And
as noted in [13] the iterations for the global displacement field result in repeated fine-scale queries that are similar and
this further improves the effectiveness of adaptive sampling module in reducing the fraction of expensive fine-scale
computations performed.

Results of the bend simulations are shown in Figs. 11 and 12. These results correspond to cases 1 and 4 in [38]. In
these two cases the samples are extracted from the rolled plate and bent in different directions, resulting in significant
contrast in the mechanical response between the two cases. While the complete sample is shown in Fig. 11, only one
quarter of the domain is simulated due to symmetries in the loading and, to good approximation, in the initial texture.
Consistent with the initial texture, the deformation induced by the bending, and the unidirectional nature of twinning;
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Fig. 9. Convergence of stress response versus degree dpf, as compared to the dpf = 9 case, for titanium using the VPSC linking assumption.
Results are for uniaxial tension (above) and uniaxial compression (below).

Table 3
Executable instance and process allocation for the four-point bend
simulations, on a machine with eight cores per node. The Server-
Proxy balances the fY evaluation workload among the fine-scale
(FS) executables running VPSC. The adaptive sampling mod-
ules running as part of the coarse-scale (CS) processes produce a
fY workload that is highly nonuniform across the parallel finite
element domain decomposition and through simulation time [23].
See also Fig. 1 for a diagram outlining the call sequence interaction
among components.

Component Instances Processes/instance Total nodes

CS 1 64 2
ServerProxy 1 1 1
FS 10 48 60

for case 1 we see significant twinning only on the compressive side of the neutral axis. Note that the twin fraction
plotted in Figs. 11 and 12 is evolved only as a convenience for tracking material response and does not feed back into
the constitute evaluations. The twinning does however result in differences in the evolved texture, similar to differences
shown in Section 4.1 for uniaxial tension versus compression. The shapes of the simulated final cross-sections shown
in Fig. 12 are consistent with experimental observations for both case 1 and case 4. Capturing this type of anisotropic
and directionally dependent material response is enabled by the crystal mechanics based plasticity model that includes
a sound treatment of twinning. Differences in propensity to twin under the applied loading condition play a significant
role in the different cross-sections shown in Fig. 12. As discussed in Section 4.1, the method is applicable out to much



N.R. Barton et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 224–242 239

Fig. 10. Convergence of evolved ODF versus degree dpf, as seen through (0001) pole figures, for titanium using the VPSC linking assumption.

larger strains, with the degree of the discrete harmonic expansion adjustable depending on the accuracy needed to
capture texture evolution and its effects on material response for a given application.

The ratio of fine-scale evaluations ( fY ) to fine-scale queries was about 0.1 in these four-point bend calculations.
This is sufficient to provide significant wall-clock speedup, but is not nearly as low as has been reported in other
applications of adaptive sampling [13,17,23]. However, the emphasis here is on demonstration of the discrete harmonic
based approach and we therefore used a conservative sampling strategy.

5. Conclusions

A method for multi-scale embedding of polycrystal plasticity has been demonstrated, based on the use of
discrete harmonics and finite elements over Rodrigues space. The method includes the effects of ODF evolution
and convergence properties of the ODF evolution and flow stress response are attractive. Numerical performance is
not an emphasis here, but the formulation allows for a compact representation of material state that is amenable to
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Fig. 11. Results from four-point bend simulation with VPSC: (top) twin fraction, (bottom) axial stress component. Sample orientation corresponds
to case 1 in [38].

Fig. 12. Results from four-point bend simulations with VPSC: cross-sections at the mid-plane for sample orientations corresponding to (left) case
1 and (right) case 4 in [38], with plots showing simulated twin fraction over the cross-section.

use with adaptive sampling methodologies for more efficient multi-scale embedding. Focused work on numerical
performance would be a useful avenue of further investigation. Computational cost aside, the memory footprint of the
material state representation in the discrete harmonic based approach is small compared to that for a discrete aggregate
representation of a polycrystal and this has advantages in some applications.

As expected, the response from the compact discrete harmonic representation of state differs somewhat from that
predicted by a predominant twin reorientation model that tracks a much more extensive microstructural state. The
current framework could be extended to include other fields, such as dislocation density or twin fractions, over the
orientation space. However, results here indicate that the method as demonstrated captures the most significant effects
of ODF evolution and its influence on flow stress response.
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